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Exact solution of the Coulomb problem on a lattice 
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Abstract. We study the difference Sdrridingerrrequation with the Coulomb potential 
on the uniform one-dimenrional lattice. Exact formulae for the eigenfunctions of 
both the bound state and scattering problem are obtained in t e m  of the Gauss 
hypergeometric function. Some characteristics of the hound states and the scattering 
phase shift are calculated. Limit relations between lattice and continuum Coulomb 
prohkms are eatablished. 

1. I;;tro&Gi&,n 

The Schrodinger equation for a particle 'hopping' on a discrete lattice ('Wannier par- 
ticle') provides a problem which has as much mathematical interest as importance due 
to applications in exciton physics (see [l] and references therein) and in lattice gauge 
theories.[2]. Exactly solvable models have a special place in the field; they are rare 
and very desirable. 

To our knowledge, the only known instances up to now where the Schrodinger 
equation on a lattice admits a complete analytical solution were those of the linear 
potential on the uniform one-dimensional lattice [3] and the harmonic oscillator on 
the multi-dimensional cubic lattice [4]. In these models the eigenfunctions of the 
discrete spectrum are expressed through known special functions (Bessel and Mathieu 
functions). 

I t  is natural to expect that the Couiomb potentid on a lattice might be another 
'privileged' model for which the discrete Schrodinger equation is solved exactly. In- 
deed, in [5] the eigenvalue spect& of the Coulomh Hamiltonian on the Bethe lattice 
was obtained analytically by means of a continuous fraction expansion of the Green 
function [6]. Being a powerful tool for deriving the eigenvalues, the method, however, 
fails to provide any information whatever about the eigenfunctions. But the very 
existence of anaiyticai expressions for the eigenvaiues is evidence that ,there can ais0 
exist closed-form formulae for the eigenfunctions. 

In this paper we show that this is the case for the uniform one-dimensional lattice 
(the simplest version of the Bethe lattice of coordination 2). More precisely, we derive 
analytically the solutions to the difference Schrodinger equation 

@(I + 1) - "(I) + @(z - 1) + ( E -  , 1) i;, @(I) = 0 (1) 

lY(0) = 0 I E z, = {O, 1 , 2 , .  . .) 
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with arbitrary energy E. They are expressed in terms of the Gauss hypergeometric 
function 2F,. The condition of the norm boundness of yields the quantization rule 
for the eigenvalues obtained in [5]. The discrete spectrum eigenfunctions are given in 
terms of Meixner polynomials (a particular set of the classical orthogonal polynomials 
of a discrete variable [7]). This enables us to calculate exactly various characteristics 
of the bound states. 

In addition, we study the scattering problem related to the Hamiltonian (1) and 
derive an exact formula for the corresponding phase shift. Somewhat surprisingly, it 
is ahout the same a8 for the continuum Coulomb Hamiltonian. Aside from the models 
with zerc-range interaction potentials, we believe that this is the first time that a 
non-trivial scattering problem on a lattice is solved exactly. 

2. Bound states 

2.1. General solution 

Note that the problem (1) should be supplemented with one more condition, say 
q(1) = 1, which fixes a normalization constant and is of no importance. 

It is convenient to introduce the momentum k related to the energy by the standard 
lattice dispersion rule [l] 

E = E(k) = 2(1 - cos k). (2) 

Following the analogy with the continuum Coulomb problem [E], we seek the so- 
lution to equation (1) in the form 

~ ( z )  = zL(z)eiLZ. 

Substituting this ansatz into (1) leads to an equation for L:  

(I + 1)L(z + 1) - e-"(2z cos k + q)  L(z) + (I - l)e-*"L(z - 1) = 0. (3) 

The key point is that this equation is quite similar to one of the fifteen Gauss relations 
[9] between the contiguous hypergeometric functions: 

a ( < -  l ) F ( a + l ) + [ 2 a - c - ( a - b ) < ] F ( a ) + ( c - a ) F ( a - 1 )  = O  (4) 

where F ( a )  stands for z F l ( a ,  b ; c ; E ) .  Namely, the coefficients of equation (3) are linear 
in z whereas those ofequation (4) are linear in a. Thissuggests the following functional 
form for L(z) :  

L ( 2 )  = zFl(-r + 4, b; C; F )  (5) 

where 0, b, c and ( do not depend on I and may be functions of the momentum k. 
Upon writing down the relation (4) for the hypergeometric function ( 5 )  and comparing 
the result with equation (3), one gets a set of equations for the parameters of the ansatz 
(5) : 

(p  - z)(< - 1) = y(z - 1) e-zik 

c + z  - p  = y(z + 1) 

- 2x + 2p - c + (I - + b)< = -2ye-"(zcos k + q / 2 )  
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where y is an arbitrary factor by which one can multiply equation (3). These equations 
are to he satisfied for any 2: with the other parameters fixed, so that the first two 
equations yield 

y = l  0 = 1  c = 2  ( z 1 - e -  2ik . 

The third equation fixes the last parameter of the ansatz ( 5 ) :  

Thus, the function 

q ( ~ ) = z e ~ ~ ' ~ ~ ~ ( - z + 1 ,  ~ + i q ( k ) ; ~ ;  ~ - e - ~ " )  (7) 

solves the difference Schrodinger equation (1) with arbitrary energy E. 

2.2. Eigenfvnctions 

We now proceed to study the discrete spectrum of the problem. For a bound state, 
the wavefunction (7) should decrease fast enough as z -+ 00 in order to provide the 
llorm hollndneaP 

As follows from the known asymptotics of the hypergeometric function [9] (see also the 
next section), equation (8) holds true provided the exponent of equation (7) decreases 
as z + 00 and the hypergeometric function is a finite polynomial in z. This yelds the 
quantization rule for the momentum: 

k, = i n n  n, 2 0 

l+ iq ( in , )= -n  n = 0 , 1 , 2 ,  

so that 

P sinh I(, = -- 
2(n + 1) 

(9) 

Therefore, in the case of the attractive Coulomb potential ( q  < 0) we get the eigenvalue 
spectrum 

which coincides with the result of [5] for the trivial Bethe lattice with coordination 
c = 2 .  

Of course, there are no hound states if the Coulomb potential is repulsive ( q  > 0). 
As we shall see in the next section, for q > 0 equation (11) corresponds to zeros 
of the 5' matrix related to the lattice Hamiltonian (1) on the complex plane of the 
momentum. 
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According to (7) and (9), the eigenfunctions of the bound states (11) are given by 

Q,(I) = A ,  IP:'~ p1(-z  + 1, -n; 2; 1 - p ; l )  (12) 

where pn = e-2rm and A, is a normalization constant fixed by 

- .  
pn(zji2 = 1. (13) 

Z€Z+ 

I t  is worthwile noticing that up to a factor the hypergeometric function of (12) 
coincides with the Meixner polynomial miz"'")(z - l), so that  

@,(I) = A,  zp:/'m:+-)(r - 1). (14) 

The Meixner polynomials 

are of the family of the classical orthogonal polynomials of a discrete variable, of which 
much is known [7]. The following relations proven in [7] are rather useful when dealing 
with the eigenfunctions (14). 

(i) The polynomials m$,2") are orthogonal in I, (Z,) with the weight function 

so that  

(ii) Recurrence relation: 

where m,(z) E mk2")(z) and 

(IS) 

Now we proceed to evaluate some characteristics of the bound states. 
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2.3. Normalization constant, mean radius and average potential energy 
Hereafter we set p = pn = e-"", where K, is defined by (10). 

tuting (14) into equation (13) yields 
Let us begin with calculation of the normalization constant A,, from (14). Substi- 

A,!, ~zp'.[m~z"')(+ - l)]' = 1. 
=EZ+ 

TI upon shifting ihe sum argument x - z + i one geis 

1 = p A: {d: + SF)} 
where use has been made of equation (16) and where we have introduced the notation 

SA') = 2' p(2 ,  a ) [ m p q 2  I = 1,2, 
=€Z+ 

The sum Si1) is evaluated by means of the recurrence relation (17): 
1 

1 - P  
.Si1) = - [n + p ( n  + 2)] d,!, 

and from equation (19) one gets the normalization constant: 

. ~ ,  exp!-(n+ 1)&1 sinhn, s. 2 
A, = - 

in -t I)! , ... .. . 
Next, let us calculate the mean radius of a bound state 1 

r,  = zr~,!,(z). 

r, = pA,!,(d: + $1 + .Siz)) 

SEZ+ 

Upon using (14) and making the transform 2 - z: + 1 in the resulting sum, we have 

(22) 
where Si') is defined by (20). To evaluate the sum S?', we again use the recurrence 
relation (17) which follows (m,(z) E m, (',P)) 

[zm,(z)]' = (a'm,!,,, + + y:m:-l + . . .) 
where . . . stands for a sum of products of two Meixner polynomials with different 
indices. Such terms do not contribute in (20) due to the orthogonality (16), so that 
we have 

S,?= cxzd;+, +P:d,!, + y i d : - ,  (23) 
with the coefficients from ( la) .  Equations (21)-(23) yield the following value for the 
mean radius: 

(24) 
(n + 1) [6(n + 1)' + n'] 

In1[4(n + 1)' + nz1'/' (2 + cosh 2 4  = n + l  
T" = - 

smh 2~~ 
' 

Finally, consider the average Coulomb potential energy of a bound state: 

FraE (!4] %Ed (16) o-e gets 

Cr, = qp A,!, d: = -2e-"* sinh K,, tanh K, . 
Apparently, this shows failure of the virial theorem which is a specific feature of the 
Schrodinger dynamics on a lattice. 
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3. Scattering states 

For the continuous spectrum of the Hamiltonian (1) the momentum k is real and runs 
over the band [ O , r r ] .  Equation (7) yields the wavefunction of the continuous spectrum 
which is subjected to the regular boundary condition at the origin. 

The exact expression for the wavefunction enables us to calculate the phase shift in 
the Coulomb scattering problem on the lattice, being provided with the asymptotic8 
nf the hgpergearr.etrica! f%c?inn of (7) a? 2 - M. !?s !eading ?e:- i: af the fc:m 

e-ikz 
,Fl(-z, 1 + iq; 2; 1 - 

where 

- B(k) 7 sin[ik(z + 1) - iqln(2zsin k) + i6,(k)] (25) 

&,(k )=a rg r ( l+ iq )  (26)  

and 

As follows from equations (7) and (25), the scattering wavefunction defined as 

U(z, k) = B-'(k) ze ikr  2Fl(-z + 1, 1 + iq(k); 2; 1 - e-2ik) (27) 

has the asymptotics 

P(z ,k) - . s in{ ikz- iq ln(2~s ink)+i6~(k))  [ 1+0 (31 - z'oo. (28) 

Recall that energy is related to  the momentum k by the dispersion rule (2) and the 
Coulomb parameter q is defined by equation (6). 

It is easy to check that if the Coulomb potential is set to be zero ( q  = 0), equation 
(27) gives the trivial wavefunction of the free difference Hamiltonian on the lattice: 

U(,, k)I,,=o = sinkz. 

Comparing this with the asymptotics (28) shows that the phase 6,(k)  may be inter- 
preted as the phase shift for the Coulomb scattering problem on the lattice. 

Remarkably, the asymptotics (28) is very similar to its continuum analogue [8] in 
the Coulomb scattering problem on the half line [O,oo). Aside from normalization 
factors, the only difference is in the form of the momentum dependence of the log& 
ritbmic phase of (28) and that of the Coulomb parameter (6): in our case momentum 
is involved through sink to  be compared to k in the continuum limit. 

Defining the S matrix through the phase shift in the standard way 

allows one to interpret the bound states (11) as poles of the S matrix on the upper half 
plane of the complex momentum k. In the case of the repulsive Coulomb potential 
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equation (11) with sinhK, = q/2(n + 1) describes the zeros of the S matrix (29) 
(resonances) with the 'eigenfunctions' exponentially increasing as z + 00. 

We did not find in the literature a suitable asymptotic representation for the 
hypergeometric function which follows equation (25). This is why we outline the 
proof of the asymptotics (25). 

By making use of the standard integral representation [9] we write the bypergeo- 
metric function as 

2 ~ l ( - z ,  1 + iq; 2; 1 - E )  = [r(i + i q ) r ( l -  i7)l-l 1 

I =  ~ l d t t ' n ( l - f ) - i n [ l - f ( l - € ) ] "  

where(=e-zik. Clearly,Il-t(l-[)l< l f o r t E ( O , l ) a n d ~ l - t ( l - [ ) l = l a t t = O , l .  
Therefore, the large-z asymptotics of (30) is generated by the endpoints t = 0 , l  of 
the integral. Upon taking into account only the leading terms of the integrand near 
these points, the integral can be evaluated in terms of the gamma function to obtain 

I = Io + Il 
T . I ,  c\-1-1n --1-w V I ,  4 :-\ ' 0  - II - c l  4, I I' TU,, 

ll ( i - ~ - ~ ) - ~ + ' ~ z - l + ~ ~ ~ ~ ~ ( i - i ~ )  

where lo and Il represent the contributions of the points t = 0, l .  A straightforward 
calculation now leads to the asymptotics (25). 

4. Continuum limit 

So far we have considered a lattice with a unit step between sites. One can easily 
generalize the treatment for a lattice of arbitrary step h which corresponds to the 
Schrodinger equation 

h - ' { @ ( z  + h )  - 2z@(z) + Q(z - h ) )  + ( E  - ') 2 a(=) = 0 (31) 

"(0) = 0 z = O,h,Zh, 

Namely, the solutions to the equations (1) and (31) are related by the scaling trans- 
forms 

2 

2'- q - qh E - EhZ k - kh (32) h 

to be performed in all formulae above. 
It is natural to expect that when h -, 0 the properly normalized wavefunctions of 

the difference operator (31) will converge to those of the continuum Coulomb Hamil- 
tonian. This limit can be established by making use of the known relation for the 
hypergeometric function [9]: 

lim zFl(a, b ;  c ;  ./a) = ,F,(b; c; z) 
(I-- 

(33) 
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where lFl stands for the confluent hypergeometric function [9]. 
Consider the discrete spectrum eigenfunctions (14). Due to the definition (15) 

and (33), in the continuum limit the Meixner polynomials converge to the Laguerre 
polynomials [7], 

Upon taking into account the scaling transforms (32), this results in the following 
limit relation for the wavefunctions of the bound states: 

h-0 lim h-' / '@(z/h) = C, L ; ( T )  (34) 

where 

The RHS of (34) coincides with the eigenfunction of the continuum s-wave Coulomb 
Hamiltonian on the half line [8]. Also, it is clearly seen that the eigenvalues (11) and 
the mean radii (24) tend to the corresponding continuum values as h - 0: 

+ O ( h 2 )  q2 
4(n + E"@) = 

3 r,(h) = -(n + 1)' + O ( h 2 )  
IPI 

For the scattering states (27) according to  (32) and (33) we have 

lim I ( z / h ,  kh) = e-""/21r(1 + irl,)l kceik" lFl(l + iqc; 2; -2ikz) 
h-0 

where 'I, = q/2k. This limit coincides with the well-known solution of the Coulomb 
scattering problem on the half line [8]. Of course, the Coulomb phase shift (26) 
converges to its continuum value arg r( 1 + iqJ. 
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